Answer:
a) We reject H₀
b) The manager won´t be satisfied with nominal filling its cup
c) See step-by-step explanation
Step-by-step explanation:
Normal distribution n < 30, therefore, we should use t - student table
Sample size n = 16
degree of freedom = df = n - 1 df = 15
Sample mean μ = 5,85 ou
Sample standard deviation is s = 0,2 ou
Hypothesis test
Null hypothesis H₀ μ >= μ₀
Alternative hypothesis Hₐ μ < μ₀
CI = 95 % then α = 5 % α = 0,05 α/2 = 0,025
Then in t-student table we find t(c) = 1,753
To calculate t(s)
t(s) = ( μ - μ₀ ) s/√n
t(s) = ( 5,85 - 6 ) / 0,2/√16
t(s) = - 0,15* 4 / 0,2
t(s) = - 3
To compare t(s) and t(c)
|t(s)| > |t(c)| 3 > 1,753
Then t(s) is in the rejection region. We should reject H₀. Data indicate that at 95 % of CI μ seems to be smaller than 6 ou
b) The manager won´t be satisfied with nominal filling its cup