Can you help me learn how to solve problems like these? I need to know the answer, but I also need to know how to do it because this isn't all of them.
[tex]\frac{1}{p-2} / \frac{4p^2}{p^2+p-6}[/tex]
[tex]\frac{6n}{3n+2} - \frac{2}{2n-2}[/tex]
[tex]\frac{2x}{3x^2+18x} + \frac{3}{2}[/tex]

Respuesta :

[tex]\dfrac{\dfrac{1}{p-2}}{\dfrac{4p^2}{p^2+p-6}}=\\\\\\\dfrac{1}{p-2}\cdot\dfrac{p^2+p-6}{4p^2}=\\\\\dfrac{1}{p-2}\cdot\dfrac{p^2+3p-2p-6}{4p^2}=\\\\\dfrac{1}{p-2}\cdot\dfrac{p(p+3)-2(p+3)}{4p^2}=\\\\\dfrac{1}{p-2}\cdot\dfrac{(p-2)(p+3)}{4p^2}=\\\\\dfrac{p+3}{4p^2}[/tex]

--------------------------------------------------------------------

[tex]\dfrac{6n}{3n+2}-\dfrac{2}{2n-2}=\\\\\dfrac{6n(2n-2)}{(3n+2)(2n-2)}-\dfrac{2(3n+2)}{(3n+2)(2n-2)}=\\\\\dfrac{12n^2-12n-(6n+4)}{6n^2-6n+4n-4}=\\\\\dfrac{12n^2-12n-6n-4}{6n^2-2n-4}=\\\\\dfrac{12n^2-18n-4}{6n^2-2n-4}=\\\\\dfrac{2(6n^2-9n-2)}{2(3n^2-n-2)}=\\\\\dfrac{6n^2-9n-2}{3n^2-n-2}[/tex]

----------------------------------------------------------------------

[tex]\dfrac{2x}{3x^2+18x}+\dfrac{3}{2}=\\\\\dfrac{2}{3x+18}+\dfrac{3}{2}=\\\\\dfrac{2\cdot2}{2(3x+18)}+\dfrac{3(3x+18)}{2(3x+18)}=\\\\\dfrac{4+9x+54}{6x+36}=\\\\\dfrac{9x+58}{6x+36}[/tex]

Answer:

p^3−10p^2+1

——————        We find roots of zeros  F(p) = p^3 - 10p^2 + 1 and see there

      p^2                                             are no rational roots

       

Step-by-step explanation:

                 p^2

Simplify   ——

                 p^2

1.1    Canceling out p^2 as it appears on both sides of the fraction line

   Equation at the end of step 1

:1

 ((————-(4•1))+p)-6

   (p^2)

STEP 2: working left to right

                  1

Simplify   ——

                 p^2

Equation at the end of step 2:    

1 /p^2 ((—— -  4) +  p) -  6

STEP 3:

Rewriting the whole as an Equivalent Fraction

3.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  p^2  as the denominator :

          4         4 • p^2

   4 =  —  =  ——————

           1             p^2  

Equivalent fraction

: The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

             1 - (4 • p^2)                 1 - 4p^2

————————————  =  ———————

                    p^2                             p^2  

Equation at the end of step 3:

        (1 - 4p^2)          

 (————————— +  p) -  6

             p^2              

STEP 4:

Rewriting the whole as an Equivalent Fraction

4.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  p2  as the denominator :

           p         p • p^2

   p =  —  =  ——————

           1             p^2  

Trying to factor as a Difference of Squares:

4.2      Factoring:  1 - 4p^2

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  1  is the square of  1

Check : 4 is the square of 2

Check :  p^2  is the square of  p^1

Factorization is :       (1 + 2p)  •  (1 - 2p)

Adding fractions that have a common denominator :

4.3       Adding up the two equivalent fractions

                (2p+1) • (1-2p) + p • p^2                                   p^3 - 4p^2 + 1

————————————————————————  =  ————————————

                               p^2                                                            p^2    

Equation at the end of step

4:

        (p^3 - 4p^2 + 1)    

 —————————————— -  6

                 p^2          

STEP 5:

Rewriting the whole as an Equivalent Fraction

5.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  p^2  as the denominator :

           6         6 • p^2

   6 =  —  =  ——————

           1             p^2  

Polynomial Roots Calculator :

5.2    Find roots (zeroes) of :       F(p) = p^3 - 4p^2 + 1

Polynomial Roots Calculator is a set of methods aimed at finding values of  p  for which   F(p)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  p  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -4.00    

     1       1        1.00        -2.00    

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

5.3       Adding up the two equivalent fractions

(p3-4p2+1) - (6 • p2)     p3 - 10p2 + 1

—————————————————————  =  —————————————

         p2                    p2      

Polynomial Roots Calculator :

5.4    Find roots (zeroes) of :       F(p) = p3 - 10p2 + 1

    See theory in step 5.2

In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1

Let us test ....

  P       Q    P/Q       F(P/Q)  Divisor

     -1      1        -1.00       -10.00    

       1      1    1.00       -8.00    

Polynomial Roots Calculator found no rational roots

Final result :

             p3 - 10p2 + 1

 —————————————

                 p2