Respuesta :

Answer:

14

Step-by-step explanation:

Using the sine ratio in the right triangle and the exact value

sin45° = [tex]\frac{1}{\sqrt{2} }[/tex] , thus

sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{7\sqrt{2} }{x}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )

x = 7[tex]\sqrt{2}[/tex] × [tex]\sqrt{2}[/tex] = 7 × 2 = 14

Answer:

x = 14

i hope it helps :)

Step-by-step explanation:

[tex]Hypotenuse = x \\Opposite = 7\sqrt{2} \\\alpha = 45\\\\\Using \: SOHCAHTOA\\Sin \alpha = \frac{Opposite}{Hypotenuse}\\ \\Sin 45 = \frac{7\sqrt{2} }{x} \\\\\frac{\sqrt{2} }{2} = \frac{7\sqrt{2} }{x} \\\\\sqrt{2x} = 14\sqrt{2} \\\\\frac{\sqrt{2x} }{2} = \frac{14\sqrt{2} }{2} \\x = 14[/tex]