Which statement about class ll is true
A?
B?
C?
D?

Answer:
D
Step-by-step explanation:
Let's first find the mean and median of each class.
Class 1:
The mean is simply all the numbers added up and then divided by the number of elements. There are 9 students in Class 1. Thus, we add all the ages up and then divide by 9. Thus:
[tex]\text{Class 1 Mean }= \frac{14+15+15+16+16+16+17+17+18}{9} \\=144/9=16[/tex]
The median is simply the middle number when the data sets are placed in order. The median of Class 1 is 16, the number in the middle.
Class 2:
Again, Class 2 has 9 students. Add up all the ages and then divide:
[tex]\text{Class 2 Mean }= \frac{13+14+15+16+16+17+18+18+19}{9}\\ =146/9\approx16.2222[/tex]
The median is the middle number of the data set. The median of Class 2 is 16.
Therefore, the mean of Class 2 is larger than the mean of Class 1. The medians of the two classes are equivalent.
Of the answer choices given, only D is correct.
Answer:
The mean of class II is larger and the median is the same
Step-by-step explanation:
Class I
14,15,15,16,16,16,17,17,18
The mean is
(14+15+15+16+16+16+17+17+18)/9
144/9 = 16
The median is the middle number
14,15,15,16, 16, 16,17,17,18
median = 16
Class II
13,14,15,16,16,17,18,18,19
The mean is
(13+14+15+16+16+17+18+18+19)/9
146/9 = 16.2repeating
The median is the middle number
13,14,15,16 ,16, 17,18,18,19
median = 16