The sum of two polynomials is 10a^2b^2-8a^2b+6ab^2-4ab+2 if one addend is -5a^2b^2+12a^2b-5 what is the other addend

Respuesta :

Answer:

The other addend is [tex]15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex].

Step-by-step explanation:

The other addend is determined by subtracting [tex]-5\cdot a^{2}\cdot b^{2}+12\cdot a^{2}\cdot b-5[/tex] from [tex]10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a\cdot b^{2}-4\cdot a \cdot b + 2[/tex]:

[tex]x = 10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b + 2 - (-5\cdot a^{2}\cdot b^{2}+12\cdot a^{2}\cdot b -5)[/tex]

[tex]x = 10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +2 +5\cdot a^{2}\cdot b^{2}-12\cdot a^{2}\cdot b+5[/tex]

[tex]x = (10\cdot a^{2}\cdot b^{2}+5\cdot a^{2}\cdot b^{2})-(8\cdot a^{2}\cdot b+12\cdot a^{2}\cdot b)+6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex]

[tex]x = 15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex]

The other addend is [tex]15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex].

Answer:

A

Step-by-step explanation: