Answer:
Step-by-step explanation:
The diagonals of the rhombus divide it into 4 congruent right triangles.
So we can use Pythagorean theorem to calculate side of a rhombus.
[tex](\frac e2)^2+(\frac f2)^2=s^2\\\\e=30\,cm\quad\implies\quad\frac e2=15\,cm\\\\f=16\,cm\quad\implies\quad\frac f2=8\,cm\\\\15^2+8^2=s^2\\\\s^2=225+64\\\\s^2=289\\\\s=17[/tex]
Perimeter:
P = 4s = 4•17 = 68 cm