Parameterize this surface (call it S) by
[tex]\mathbf s(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf j+u^2\,\mathbf k[/tex]
with [tex]0\le u\le2[/tex] and [tex]0\le v\le2\pi[/tex].
The normal vector to S is
[tex]\mathbf n=\dfrac{\partial\mathbf s}{\partial u}\times\dfrac{\partial\mathbf s}{\partial v}=-2u^2\cos v\,\mathbf i-2u^2\sin v\,\mathbf j+u\,\mathbf k[/tex]
Compute the curl of F :
[tex]\nabla\times\mathbf F=-2\,\mathbf i+3\,\mathbf j+5\,\mathbf k[/tex]
So the flux of curl(F) is
[tex]\displaystyle\iint_S(\nabla\times\mathbf F)\cdot\mathrm d\mathbf S=\int_0^{2\pi}\int_0^2(\nabla\times\mathbf F)\cdot\mathbf n\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle\int_0^{2\pi}\int_0^2(5u+4u^2\cos v-6u^2\sin v)\,\mathrm du\,\mathrm dv=\boxed{20\pi}[/tex]
Alternatively, you can apply Stokes' theorem, which reduces the surface integral of the curl of F to the line integral of F along the intersection of the paraboloid with the plane z = 4. Parameterize this curve (call it C) by
[tex]\mathbf r(t)=2\cos t\,\mathbf i+2\sin t\,\mathbf j+3\,\mathbf k[/tex]
with [tex]0\le t\le2\pi[/tex]. Then
[tex]\displaystyle\iint_S(\nabla\times\mathbf F)\cdot\mathrm d\mathbf S=\int_0^{2\pi}\mathbf F\cdot\mathrm d\mathbf r[/tex]
[tex]=\displaystyle\int_0^{2\pi}(20\cos^2t-24\sin t)\,\mathrm dt=\boxed{20\pi}[/tex]