Use the diagram to complete the statement. Triangle J K L is shown. Angle K J L is a right angle. Angle J K L is 52 degrees and angle K L J is 38 degrees. Given △JKL, sin(38°) equals cos(38°). cos(52°). tan(38°). tan(52°).

Respuesta :

Answer:

[tex]\bold{sin(38^\circ)=cos(52^\circ)}[/tex]

Step-by-step explanation:

Given that [tex]\triangle KJL[/tex] is a right angled triangle.

[tex]\angle JKL = 52^\circ\\\angle KLJ = 38^\circ[/tex]

and

[tex]\angle KJL = 90^\circ[/tex]

Kindly refer to the attached image of [tex]\triangle KJL[/tex] in which all the given angles are shown.

To find:

sin(38°) = ?

a) cos(38°)

b) cos(52°)

c) tan(38°)

d) tan(52°)

Solution:

Let us use the trigonometric identities in the given [tex]\triangle KJL[/tex].

We have to find the value of sin(38°).

We know that sine trigonometric identity is given as:

[tex]sin\theta =\dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]sin(\angle JLK) = \dfrac{JK}{KL}\\OR\\sin(38^\circ) = \dfrac{JK}{KL}[/tex]....... (1)

Now, let us find out the values of trigonometric functions given in options one by one:

[tex]cos\theta =\dfrac{Base}{Hypotenuse}[/tex]

[tex]cos(\angle JLK) = \dfrac{JL}{KL}\\OR\\cos(38^\circ) = \dfrac{JL}{KL}[/tex]....... (2)

By (1) and (2):

sin(38°) [tex]\neq[/tex] cos(38°).

[tex]cos(\angle JKL) = \dfrac{JK}{KL}\\OR\\cos(52^\circ) = \dfrac{JK}{KL}[/tex] ...... (3)

Comparing equations (1) and (3):

we get the both are same.

[tex]\therefore \bold{sin(38^\circ)=cos(52^\circ)}[/tex]

Ver imagen isyllus

Answer:

B in EDG

Step-by-step explanation: