Which is the simplified form of (StartFraction 2 a b Over a Superscript negative 5 Baseline b squared EndFraction) Superscript negative 3? Assume a not-equals 0, b not-equals 0. StartFraction b cubed Over 8 a Superscript 18 Baseline EndFraction StartFraction b squared Over 8 a Superscript 45 Baseline EndFraction StartFraction a Superscript 6 Baseline Over 4 b EndFraction StartFraction 2 a Superscript 6 Baseline Over b Superscript 5 Baseline EndFraction

Respuesta :

Answer:

  [tex]\dfrac{b^3}{8a^{18}}[/tex]   matches the first choice

Step-by-step explanation:

[tex]\left(\dfrac{2 a b}{a^{-5}b^2}\right)^{-3}=(2a^{1-(-5)}b^{1-2})^{-3}=(2a^6b^{-1})^{-3}\\\\=2^{-3}a^{6(-3)}b^{-1(-3)}=8^{-1}a^{-18}b^3=\boxed{\dfrac{b^3}{8a^{18}}}[/tex]

__

The applicable rules of exponents are ...

  (a^b)(a^c) = a^(b+c)

  (a^b)^c = a^(bc)

  a^-b = 1/a^b

Answer:

A

Step-by-step explanation:

just took the pretest! good luck!