Answer:
0.35 m³/s
Explanation:
When the pipe's depth is 0.4 m, the area of the circular segment is:
A = ½ R² (θ − sin θ)
The depth of the water is:
h = R (1 − cos(θ/2))
Solving for θ:
0.4 = 0.5 (1 − cos(θ/2))
0.8 = 1 − cos(θ/2)
cos(θ/2) = 0.2
θ/2 = acos(0.2)
θ = 2 acos(0.2)
θ ≈ 2.74 rad
The area is therefore:
A = ½ (0.5 m)² (2.74 − sin 2.74)
A = 0.338 m²
The cross-sectional area when the pipe is full is:
A = π (0.5 m)²
A = 0.785 m²
The flow velocity is constant:
v = v
Q / A = Q / A
(0.15 m³/s) / (0.338 m²) = Q / (0.785 m²)
Q = 0.35 m³/s