Find all values of $x$ such that \[\frac{2x}{x + 2} = -\frac{6}{x + 4}.\]If you find more than one value, then list your solutions, separated by commas.

Respuesta :

Greetings from Brasil...

2X/(X + 2) = 6/(X + 4)

2X(X + 4) = 6(X + 2)

2X² + 2X - 12 = 0     ÷2

2X²/2 + 2X/2 - 12/2 = 0/2

X² + X - 6 = 0

Δ = 25

X' = 2

X'' = - 3

S = {-3, 2}

Ver imagen tomson1975

By using factorization,  [tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex] , values of x are -2, 3.

What is factorization?

Factorization can be defined as the process of breaking down a number into smaller numbers which when multiplied together arrive at the original number. These numbers are broken down into factors or divisors.

Given

[tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex]

⇒ 2x(x + 4) = 6(x + 2)

⇒ [tex]2x^{2} +8x = 6x + 12[/tex]

⇒ [tex]2x^{2} +8x-6x-12=0[/tex]

⇒ [tex]2x^{2} +2x -12=0[/tex]

Divide above equation by 2, we get

⇒ [tex]x^{2} +x -6=0[/tex]

⇒ [tex]x^{2} +2x-3x-6=0[/tex]

⇒ [tex]x(x+2)-3(x+2)=0[/tex]

⇒ [tex](x+2)(x-3)=0[/tex]

⇒ x = -2, 3

By using factorization,  [tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex] , values of x are -2, 3.

Find out more information about factorization here

https://brainly.com/question/1863222

#SPJ2