A particle with charge q and momentum p, initially moving along the x-axis, enters a region where a uniform magnetic field* B=(B0)(k) extends over a width x=L. The particle is deflected a distance d in the +y direction as it traverses the field. Determine the magnitude of the momentum (p).

Respuesta :

Answer:

Magnitude of momentum = q × B0 × [d^2 + 2L^2] / 2d.

Explanation:

So, from the question, we are given that the charge = q, the momentum = p.

=> From the question We are also given that, "initially, there is movement along the x-axis which then enters a region where a uniform magnetic field* B = (B0)(k) which then extends over a width x = L, the distance = d in the +y direction as it traverses the field."

Momentum,P = mass × Velocity, v -----(1).

We know that for a free particle the magnetic field is equal to the centrepetal force. Thus, we have the magnetic field = mass,.m × (velocity,v)^2 / radius, r.

Radius,r = P × v / B0 -----------------------------(2).

Centrepetal force = q × B0 × v. ----------(3).

(If X = L and distance = d)Therefore, the radius after solving binomially, radius = (d^2 + 2 L^2) / 2d.

Equating Equation (2) and (3) gives;

P = B0 × q × r.

Hence, the Magnitude of momentum = q × B0 × [d^2 + 2L^2] / 2d.