A 10-cm-long thin glass rod uniformly charged to 6.00 nC and a 10-cm-long thin plastic rod uniformly charged to - 6.00 nC are placed side by side, 4.4 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods?
A. Specify the electric field strength E1
B. Specify the electric field strength E2
C. Specify the electric field strength E3

Respuesta :

Answer:

A) E(r) = 1.3957 × 10^(5) N/C

B) E(r) = 9.8864 × 10⁴ N/C

C) E(r) = 1.13 × 10^(5) N/C

Explanation:

We are given;

q = 6 nc = 6 × 10^(-9) C

L = 10 cm = 0.1 m

d = 4.4 cm = 0.044 m

r1 = 1 cm = 0.01 m

r2 = 2 cm = 0.02 m

r3 = 3 cm = 0.03 m

Formula for the electric field strength in this question is given as;

E(r) = q/(2π(ε_o)rL) + q/(2π(ε_o)(d - r)L)

When factorized, we have;

E(r) = q/(2π(ε_o)L) × [(1/r) + (1/(d - r))]

Plugging in the relevant values for q/(2π(ε_o)L)

We know that (ε_o) has a constant value of 8.854 × 10^(−12) C²/N².m

Thus; q/(2π(ε_o)L) = (6 × 10^(-9))/(2π(8.854 × 10^(−12)0.1) = 1078.53

Thus;

E(r) = 1078.52 [1/r + 1/(d - r)]

A) E1 is at r = 1 cm = 0.01m

Thus;

E(r) = 1078.52 (1/0.01 + (1/(0.044 - 0.01))

E(r) = 1.3957 × 10^(5) N/C

B) E2 is at r = 2 cm = 0.02 m

Thus;

E(r) = 1078.52 (1/0.02 + (1/(0.044 - 0.02))

E(r) = 9.8864 × 10⁴ N/C

C) E2 is at r = 3 cm = 0.03 m

Thus;

E(r) = 1078.52 (1/0.03 + (1/(0.044 - 0.03))

E(r) = 1.13 × 10^(5) N/C