Respuesta :

Answer:

The answer is

[tex]y = \frac{3}{2} x - 4[/tex]

Step-by-step explanation:

To find the equation of the line using a point and slope we use the formula

y - y1 = m(x - x1)

where m is the slope

(x1 ,y1) is the given point

From the question

slope = 3/2

point = ( 2 , - 1)

Substitute these values into the above formula

That's

[tex]y + 1 = \frac{3}{2} (x - 2)[/tex]

[tex]y + 1 = \frac{3}{2} x - 3[/tex]

[tex]y = \frac{3}{2} x - 3 - 1[/tex]

We have the final answer as

[tex]y = \frac{3}{2} x - 4[/tex]

Hope this helps you

Answer:

y= 3/2x -4

Step-by-step explanation:

Since we are given a point and a slope, we can use the point-slope formula.

[tex]y-y_{1} = m(x-x_{1})[/tex]

where m is the slope and (x1, y1) is a point the line passes through.

We know the slope is 3/2 and the point we are given is (2, -1).

[tex]m=\frac{3}{2} \\\\x_{1} = 2\\\\y_{1} = -1[/tex]

Substitute the values into the formula.

[tex]y- -1 = \frac{3}{2} (x-2)[/tex]

[tex]y+1=\frac{3}{2} (x-2)[/tex]

We want to find the equation of line , which is y=mx+b ( m is the slope and b is the y-intercept). Therefore, we must get y by itself on the left side of the equation.

First, distribute the 3/2. Multiply each term inside the parentheses by 3/2.

[tex]y+1= (\frac{3}{2} * x) + (\frac{3}{2} *-2)[/tex]

[tex]y+1= \frac{3}{2}x + (\frac{3}{2} *-2)[/tex]

[tex]y+1=\frac{3}{2} x + -3[/tex]

[tex]y+1=\frac{3}{2} x -3[/tex]

Next, subtract 1 from both sides.

[tex]y+1-1=\frac{3}{2} x + -3 -1[/tex]

[tex]y=\frac{3}{2} x + -3 -1[/tex]

[tex]y=\frac{3}{2} x -4[/tex]

Now the line is in slope intercept form, therefore the equation of the line is y=3/2x -4. The slope of the line is 3/2 and the y-intercept is -4.