Respuesta :

Answer:

The fraction [tex]\displaystyle \frac{55}{22}[/tex] is indeed a rational number.

Step-by-step explanation:

A number [tex]x[/tex] is rational if and only if there exist two integers [tex]p[/tex] and [tex]q[/tex] (where [tex]q \ne 0[/tex]) such that [tex]x = \displaystyle \frac{p}{q}[/tex].

[tex]\displaystyle \frac{55}{22}[/tex], the number in question here is already written in the form of a fraction. The two integers [tex]p = 55[/tex] and [tex]q = 22[/tex] ([tex]q \ne 0[/tex]) meet the requirement that [tex]\displaystyle \frac{55}{22} = \frac{p}{q}[/tex]. Therefore, [tex]\displaystyle \frac{55}{22}\![/tex] is indeed a rational number.

Side note: the [tex]p[/tex] and [tex]q[/tex] here ([tex]q \ne 0[/tex]) don't have to be unique. For example:

because [tex]\displaystyle \frac{55}{22} = \frac{5 \times 11 }{2 \times 11} = \fraac{5}{2}[/tex], both of the following pairs could satisfy [tex]\displaystyle \frac{55}{22} = \frac{p}{q}[/tex]:

  • [tex]p = 55[/tex] and [tex]q = 22[/tex];
  • [tex]p = 5[/tex] and [tex]q = 2[/tex].