If a cube has an edge of 2 feet. The edge is increasing at the rate of 6 feet per minute. How would i express the volume of the cube as a function of m, the number of minutes elapsed. V(m)= ??

Respuesta :

Answer:

v(m) = 8 + 48m+ 180m² +216m³

Step-by-step explanation:

Let's first of all represent the edge of the the cube as a function of minutes.

Initially the egde= 2feet

As times elapsed , it increases at the rate of 6 feet per min, that is, for every minute ,there is a 6 feet increase.

Let the the egde be x

X = 2 + 6(m)

Where m represent the minutes elapsed.

So we Al know that the volume of an edge = edge³

but egde = x

V(m) = x³

but x= 2+6(m)

V(m) = (2+6m)³

v(m) = 8 + 48m+ 180m² +216m³

The volume of cube as function of m is,   [tex]V(m)=72m[/tex]

Let us consider that edge of cube is a feet.

Since,   The edge is increasing at the rate of 6 feet per minute.

                      [tex]\frac{da}{dt}=6feet/min.[/tex]

Volume of cube , V = [tex]a^{3}[/tex]

            [tex]\frac{dV}{dt} =3a^{2} \frac{da}{dt}[/tex]

Substituting the value of  da/dt in above equation.

We get,     [tex]\frac{dV}{dt}=3a^{2}*(6) =18a^{2} \\\\dV=18a^{2}dt[/tex]

Integrating on both side.

          [tex]V=18a^{2}t[/tex]

Since, number of minutes elapsed is m.

Substitute , t = m and a = 2 feet in above equation.

We get,     [tex]V=18(2)^{2}*m=72m[/tex]

Thus, the volume of cube as function of m is,   [tex]V(m)=72m[/tex]

Learn more:

https://brainly.com/question/14002029