Respuesta :
Answer:
[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy} = \boxed{\bold{2}}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
[tex]\displaystyle (cu)' = cu'[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Multivariable Calculus
Partial Derivatives
Vector Calculus
Circulation Density:
[tex]\displaystyle F = M \hat{\i} + N \hat{\j} \rightarrow \text{curl} \ \bold{F} \cdot \bold{k} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}[/tex]
Green's Theorem [Circulation Curl/Tangential Form]:
[tex]\displaystyle \oint_C {F \cdot T} \, ds = \oint_C {M \, dx + N \, dy} = \iint_R {\bigg( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \bigg)} \, dx \, dy[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy}[/tex]
[tex]\displaystyle \text{Region:} \ \left \{ {{0 \leq x \leq \pi} \atop {0 \leq y \leq \sin x}} \right.[/tex]
Step 2: Integrate Pt. 1
- Define vector functions M and N:
[tex]\displaystyle M = 3y , \ N = 2x[/tex] - [Circulation Density] Differentiate [Derivative Rules and Properties]:
[tex]\displaystyle \frac{\partial M}{\partial y} = 3 , \ \frac{\partial N}{\partial x} = 2[/tex] - [Green's Theorem] Substitute in Circulation Density:
[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy} = \iint_R {2 - 3} \, dx \, dy[/tex] - Simplify:
[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy} = - \iint_R {} \, dx \, dy[/tex] - [Integrals] Substitute in region R:
[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy} = - \int\limits^{\pi}_0 \int\limits^{\sin x}_0 {} \, dy \, dx[/tex]
Step 3: Integrate Pt. 2
We can evaluate the Green's Theorem double integral we found using basic integration techniques listed above:
[tex]\displaystyle \begin{aligned}\oint_C {3y \, dx + 2x \, dy} & = - \int\limits^{\pi}_0 \int\limits^{\sin x}_0 {} \, dy \, dx \\& = - \int\limits^{\pi}_0 {y \bigg| \limits^{y = \sin x}_{y = 0}} \, dx \\& = - \int\limits^{\pi}_0 {\sin x} \, dx \\& = \cos x \bigg| \limits^{x = \pi}_{x = 0} \\& = \boxed{\bold{2}}\end{aligned}[/tex]
∴ we have evaluated the line integral using Green's Theorem.
---
Learn more about multivariable calculus: https://brainly.com/question/14502499
---
Topic: Multivariable Calculus
Unit: Green's Theorem and Surfaces