Respuesta :
Answer:
(a). The largest value of θ is 71.9°.
(b). The second largest value of θ is 57.7°.
(c). The third largest value of θ is 47.7° .
Explanation:
Given that,
Width of diffraction grating [tex]w= 19.2\ mm[/tex]
Number of rulings[tex]N=6010[/tex]
Wavelength = 337 nm
We need to calculate the distance between adjacent rulings
Using formula of distance
[tex]d=\dfrac{w}{N}[/tex]
Put the value into the formula
[tex]d=\dfrac{19.2\times10^{-3}}{6010}[/tex]
[tex]d=3.19\times10^{-6}\ m[/tex]
We need to calculate the value of m
Using formula of constructive interference
[tex]d \sin\theta=m\lambda[/tex]
[tex]\sin\theta=\dfrac{m\lambda}{d}[/tex]
Here, m = 0,1,2,3,4......
[tex]\lambda[/tex]=wavelength
For largest value of θ
[tex]\dfrac{m\lambda}{d}>1[/tex]
[tex]m>\dfrac{d}{\lambda}[/tex]
Put the value into the formula
[tex]m>\dfrac{3.19\times10^{-6}}{337\times10^{-9}}[/tex]
[tex]m>9.46[/tex]
[tex]m = 9[/tex]
(a). We need to calculate the largest value of θ
Using formula of constructive interference
[tex]\theta=\sin^{-1}(\dfrac{m\lambda}{d})[/tex]
Now, put the value of m in to the formula
[tex]\theta=\sin^{-1}(\dfrac{9\times337\times10^{-9}}{3.19\times10^{-6}})[/tex]
[tex]\theta=71.9^{\circ}[/tex]
(b). We need to calculate the second largest value of θ
Using formula of constructive interference
[tex]\theta=\sin^{-1}(\dfrac{m\lambda}{d})[/tex]
Now, put the value of m in to the formula
[tex]\theta=\sin^{-1}(\dfrac{8\times337\times10^{-9}}{3.19\times10^{-6}})[/tex]
[tex]\theta=57.7^{\circ}[/tex]
(c). We need to calculate the third largest value of θ
Using formula of constructive interference
[tex]\theta=\sin^{-1}(\dfrac{m\lambda}{d})[/tex]
Now, put the value of m in to the formula
[tex]\theta=\sin^{-1}(\dfrac{7\times337\times10^{-9}}{3.19\times10^{-6}})[/tex]
[tex]\theta=47.7^{\circ}[/tex]
Hence, (a). The largest value of θ is 71.9°.
(b). The second largest value of θ is 57.7°.
(c). The third largest value of θ is 47.7° .