The amounts of nicotine in a certain brand of cigarette are normally distributed with a mean of 0.966 grams and a standard deviation of 0.315 grams. Find the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less.

Respuesta :

Answer:

The  probability is  [tex]P(X \le 0.305 ) = 0.01795[/tex]

Step-by-step explanation:

From the question we are told that

      The population mean is  [tex]\mu = 0.966 \ grams[/tex]

       The standard deviation is  [tex]\sigma = 0.315 \ grams[/tex]

Given that the amounts of nicotine in a certain brand of cigarette are normally distributed

    Then the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less is mathematically represented as

        [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(\frac{X - \mu }{\sigma } > \frac{0.305 - \mu }{\sigma } )[/tex]

Generally

              [tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of X )[/tex]

So  

      [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z > \frac{0.305 - 0.966 }{0.315} )[/tex]

      [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z >-2.0984 )[/tex]

From the z-table(reference calculator dot  net  ) value of   [tex]P(Z >-2.0984 ) =0.98205[/tex]

So  

     [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - 0.98205[/tex]

=>  [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 0.01795[/tex]

=> [tex]P(X \le 0.305 ) = 0.01795[/tex]