Answer:
[tex]T_b=-88.48\°C[/tex]
Explanation:
Hello,
In this case, since the entropy of vaporization is defined in terms of the enthalpy of vaporization and the boiling point of the given substance, nitrous oxide, as shown below:
[tex]\Delta _{vap}S=\frac{\Delta _{vap}}{T_b}[/tex]
Solving for the boiling point of nitrous oxide, we obtain:
[tex]T_b=\frac{\Delta _{vap}H}{\Delta _{vap}S}=\frac{16.53\frac{kJ}{mol}*\frac{1000J}{1kJ} }{89.51\frac{J}{mol} } \\ \\T_b=184.67K[/tex]
Which in degree Celsius is also:
[tex]Tb=184.67-273.15\\\\T_b=-88.48\°C[/tex]
Best regards.