Respuesta :

Answer:

T = 3.14 hours

Explanation:

We need to find the orbital period (in hours) of an observation satellite in a circular orbit 1,787 km above Mars.

We know that the radius of Mars is 3,389.5 km.

So, r = 1,787 + 3,389.5 = 5176.5 km

Using Kepler's law,

[tex]T^2=\dfrac{4\pi ^2}{GM}r^3[/tex]

M is mass of Mars, [tex]M=6.39\times 10^{23}\ kg[/tex]

So,

[tex]T^2=\dfrac{4\pi ^2}{6.67\times 10^{-11}\times 6.39\times 10^{23}}\times (5176.5 \times 10^3)^3\\\\T=\sqrt{\dfrac{4\pi^{2}}{6.67\times10^{-11}\times6.39\times10^{23}}\times(5176.5\times10^{3})^{3}}\\\\T=11334.98\ s[/tex]

or

T = 3.14 hours

So, the orbital period is 3.14 hours