∠A and \angle B∠B are vertical angles. If m\angle A=(8x-4)^{\circ}∠A=(8x−4) ∘ and m\angle B=(7x+3)^{\circ}∠B=(7x+3) ∘ , then find the measure of \angle B∠B.

Respuesta :

Answer:

∠B = 52°.

Step-by-step explanation:

Given: m∠A=(8x-4)° and m∠B=(7x+3)°. ∠A and ∠B are vertical angles.

Since ∠A and ∠B are vertical angles. So, there measure are equal.

[tex]m\angle A=m\angle B[/tex]

[tex](8x-4)^{\circ}=(7x+3)^{\circ}[/tex]

[tex]8x-4=7x+3[/tex]

[tex]8x-7x=4+3[/tex]

[tex]x=7[/tex]

Now,

[tex]m\angle B=(7(7)+3)^{\circ}[/tex]

[tex]m\angle B=(49+3)^{\circ}[/tex]

[tex]m\angle B=52^{\circ}[/tex]

Therefore, the measure of ∠B is 52°.