Cylinders of compressed gas are typically filled to a pressure of 200 bar. For oxygen, what would be the molar volume at this pressure and 25 °C based on (i) the perfect gas equation, (ii) the van der Waals equation? For oxygen, a = 1.364 dm6 atm mol−2, b = 3.19 × 10−2 dm3 mol−1.

Respuesta :

Answer:

a

 [tex]V  =   0.124 \ Liters[/tex]

b

[tex]V  =  0.112 \  Liters[/tex]

Explanation:

From the question we are told that

  The pressure of compressed gas is [tex]P  =  200 \  bar = \frac{200}{1.013}=  197.4 \ atm[/tex]

  The  temperature is  [tex]T  =  25^oC =  25 + 273 = 298 \  K [/tex]

Generally the perfect gas equation is mathematically represented as

     [tex]PV =  nRT[/tex]

substituting 0.08206 L-atm/mol-K  for R and  1 mole for n

We have that

     [tex]V  =  \frac{1 *  0.08206 * 298 }{ 197.4}[/tex]

       [tex]V  =   0.124 \ Liters[/tex]

Generally the van der Waals equation is mathematically represented as

       [tex]nRT  =  [P + \frac{n^2 * a }{V^2 } ][V - nb][/tex]

=>[tex]1 *  0.08206 *298  =  [197.4 + \frac{1^2 *  1.364}{V^2 } ][V - 1 * 3.19 * 10^{-2}][/tex]

=>    [tex]V  =  0.112 \  Liters[/tex]