Respuesta :

Answer:

48: D ([tex]10u^3+4u^2-2u+10[/tex])

[tex]\left(4u^3+4u^2+2\right)+\left(6u^3-2u+8\right)[/tex]

Remove brackets:

[tex]4u^3+4u^2+2+6u^3-2u+8[/tex]

Group the similar terms together:

[tex]4u^3+6u^3+4u^2-2u+2+8[/tex]

Add/Subtract:

[tex]10u^3+4u^2-2u+10[/tex]

49: A. ([tex]2x\left(x^2+2x+4\right)[/tex])

[tex]2x^3+4x^2+8x[/tex]

Factor out 2x:

[tex]2x\left(x^2+2x+4\right)[/tex]

50: C. ([tex]8x^2+26x+15[/tex])

[tex]\left(4x+3\right)\left(2x+5\right)[/tex]

Use FOIL:

[tex]4x* \:2x+4x* \:5+3* \:2x+3* \:5[/tex]

[tex]8x^2+20x+6x+15[/tex]

[tex]8x^2+26x+15[/tex]

51:  B. ([tex]8n^3+6n^2-4n-20[/tex])

[tex]\left(2n^2+4n+4\right)\left(4n-5\right)[/tex]

Expand:

[tex]2n^2* \:4n+2n^2\left(-5\right)+4n* \:4n+4n\left(-5\right)+4* \:4n+4\left(-5\right)[/tex]

[tex]8n^3-10n^2+16n^2-20n+16n-20[/tex]

[tex]8n^3+6n^2-20n+16n-20[/tex]

[tex]8n^3+6n^2-4n-20[/tex]

52: D. [tex](d+9)(d+1)[/tex]

You can factor by grouping:

[tex]d^2+10d+9[/tex]

[tex]\left(d^2+d\right)+\left(9d+9\right)[/tex]

[tex]d\left(d+1\right)+9\left(d+1\right)[/tex]

[tex](d+9)(d+1)[/tex]