The deck of a bridge is suspended 275 feet above a river. If a pebble falls off the side of the bridge, the height, in feet, of the pebble above the water surface after t seconds is given by y = 275 - 16t^2.

(a) Find the average velocity of the pebble for the time period beginning when t − 4 and lasting (i) 0.1 seconds (ii) 0.05 seconds (iii) 0.01 seconds (b) Estimate the instantaneous velocity of the pebble after 4 seconds.

Respuesta :

Answer:

Our equation for the height is:

y(t) = 275 - 16*t^2.

a) To find the average velocity between two times, t1 and t2, (where t2 > t1) the equation is:

[tex]AV = \frac{y(t2) - y(t1)}{t2 - t1}[/tex]

Then:

i) t1 = 4s, t2 = 4s + 0.1s = 4.1s

The average velocity is:

[tex]AV = \frac{(275 - 16*4.1^2) - (275 - 16*4^2)}{4.1 - 4} = \frac{16(4^2 - 4.1^2)}{0.1} = -129.6[/tex]

And the units will be ft/s, so the average speed is:

-129.6 ft/s

The minus sign is because te pebble is falling down.

ii)  t1 = 4s, t2 = 4s + 0.05s = 4.05s

The average velocity is:

[tex]AV = \frac{(275 - 16*4.05^2) - (275 - 16*4^2)}{4.05 - 4} = \frac{16(4^2 - 4.05^2)}{0.05} = -128.8[/tex]

So the average speed is -128.9 ft/s

iii)  t1 = 4s, t2 = 4s + 0.01s = 4.01s

The average speed is:

[tex]AV = \frac{(275 - 16*4.01^2) - (275 - 16*4^2)}{4.01 - 4} = \frac{16(4^2 - 4.01^2)}{0.01} = -128.16[/tex]

The average speed is -128.16 ft/s.

b) The instantaneous velocity of the pebble after 4 seconds can be obtained by looking at the velocity equation, that is the derivative of the height equation.

v(t) = dy(t)/dt.

v(t) = -2*16*t + 0

Then the velocity at t = 4s is:

v(4s) = -32*4 = -128

The instantaneous velocity at t = 4s is -128 ft/s.

a). The average velocity of the pebble for the time period would be:

i). [tex]-129.6[/tex]

ii). [tex]-128.8[/tex]

iii). [tex]-128.16[/tex]

b). The instantaneous velocity of the pebble post 4 seconds would be:

[tex]-128[/tex]

a). We need to find the average velocity,

i). [tex]t1 = 4s, t2 = 4s + 0.1s = 4.1s[/tex]

Using [tex]y(t_{2}) - (t_{1})/(t_{2}) - (t_{1})[/tex]

by putting the values,

[tex]= y(4.1) - y(4) / 4.1 - 4[/tex]

[tex]= 275 - 16(4.1)^2 - 275 - 16(4)^2 / 0.1[/tex]

[tex]= 275 - 16*16.81 - 275 - 16(16) / 0.1[/tex]

[tex]= 6.04 - 19 / 0.1[/tex]

[tex]= -12.96 /0.1[/tex]

[tex]= -129.6[/tex]

ii).  Now,

[tex]t_{2} = (4 + 0.05 = 4.05s)[/tex]

Using [tex]y(t_{2}) - (t_{1})/(t_{2}) - (t_{1})[/tex]

[tex]= y(4.05) - y(4) / 4.05 - 4[/tex]

 [tex]= -6.4 / 0.05[/tex]

[tex]= -128.8[/tex]

iii). Now,

[tex]t_{2} = 4.01s[/tex]

Using [tex]y(t_{2}) - (t_{1})/(t_{2}) - (t_{1})[/tex]

[tex]= y(4.01) - y(4) / 4.01 - 4[/tex]

 [tex]= -1.28 / 0.01[/tex]

[tex]= -128.16[/tex]

b). Instantaneous velocity

[tex]y = 275 - 16t^2[/tex]

[tex]dy/dx = -32t[/tex]

Considering [tex]t = 4[/tex]

Instantaneous velocity post 4 seconds [tex]= -32(4)[/tex]

[tex]= -128[/tex]

Learn more about "Velocity" here:

brainly.com/question/18084516