Respuesta :

Answer:

A) [tex]\frac{n^2}{2} + \frac{n}{2}[/tex]

B) 78

Step-by-step explanation:

B) To find the sum of first 'n' whole numbers , formula used is :-

[tex]\frac{1}{2} ( n^2 + n)[/tex]

We have to find the sum of first 12 whole numbers . So here n = 12

Putting the value of 'n' in above formula ,

[tex]\frac{1}{2} ( 12^2 + 12) \\\\=> \frac{1}{2} ( 144 + 12)\\\\=> \frac{156}{2} = 78[/tex]

Answer:

see explanation

Step-by-step explanation:

A

Given

[tex]S_{n}[/tex] = [tex]\frac{1}{2}[/tex](n² + n) ← multiply each term in the parenthesis by [tex]\frac{1}{2}[/tex]

    = [tex]\frac{1}{2}[/tex] n² + [tex]\frac{1}{2}[/tex] n

B

To find the sum of the first 12 whole numbers, substitute n = 12 into the formula, that is

[tex]S_{12}[/tex] = [tex]\frac{1}{2}[/tex] (12² + 12) = [tex]\frac{1}{2}[/tex] (144 + 12) = [tex]\frac{1}{2}[/tex] × 156 = 78