The idea is to use the tangent line to [tex]f(x)=\sqrt x[/tex] at [tex]x=25[/tex] in order to approximate [tex]f(25.3)=\sqrt{25.3}[/tex].
We have
[tex]f(x)=\sqrt x\implies f(25)=\sqrt{25}=5[/tex]
[tex]f'(x)=\dfrac1{2\sqrt x}\implies f'(25)=\dfrac1{10}[/tex]
so the linear approximation to [tex]f(x)[/tex] is
[tex]L(x)=f(5)+f'(5)(x-5)=5+\dfrac{x-5}{10}=\dfrac x{10}+\dfrac92[/tex]
Hence [tex]m=\frac1{10}[/tex] and [tex]b=\frac92[/tex].
Then
[tex]f(25.3)\approx L(25.3)=\dfrac{25.3}{10}+\dfrac92=\boxed{7.03}[/tex]