Respuesta :

Answer:

[tex]A = [\frac{32}{3}][/tex]

Step-by-step explanation:

Given

[tex]y_1 = 2x - x^2[/tex]

[tex]y_2 = 2x - 4[/tex]

Required

Determine the area bounded by the curves

First, we need to determine their points of intersection

[tex]2x - x^2 = 2x - 4[/tex]

Subtract 2x from both sides

[tex]-x^2 = -4[/tex]

Multiply through by -1

[tex]x^2 = 4[/tex]

Take square root of both sides

[tex]x = 2[/tex]   or    [tex]x = -2[/tex]

This Area is then calculated as thus

[tex]A = \int\limits^a_b {[y_1 - y_2]} \, dx[/tex]

Where a = 2 and b = -2

Substitute values for [tex]y_1[/tex] and [tex]y_2[/tex]

[tex]A = \int\limits^a_b {(2x - x^2) - (2x - 4)} \, dx[/tex]

Open Brackets

[tex]A = \int\limits^a_b {2x - x^2 - 2x + 4} \, dx[/tex]

Collect Like Terms

[tex]A = \int\limits^a_b {2x - 2x- x^2 + 4} \, dx[/tex]

[tex]A = \int\limits^a_b {- x^2 + 4} \, dx[/tex]

Integrate

[tex]A = [-\frac{x^{3}}{3} +4x](2,-2)[/tex]

[tex]A = [-\frac{2^{3}}{3} +4(2)] - [-\frac{-2^{3}}{3} +4(-2)][/tex]

[tex]A = [-\frac{8}{3} +8] - [-\frac{-8}{3} -8][/tex]

[tex]A = [\frac{-8+ 24}{3}] - [\frac{8}{3} -8][/tex]

[tex]A = [\frac{-8+ 24}{3}] - [\frac{8-24}{3}][/tex]

[tex]A = [\frac{16}{3}] - [\frac{-16}{3}][/tex]

[tex]A = [\frac{16}{3}] + [\frac{16}{3}][/tex]

[tex]A = [\frac{16 + 16}{3}][/tex]

[tex]A = [\frac{32}{3}][/tex]

Hence, the Area is:

[tex]A = [\frac{32}{3}][/tex]