Respuesta :

Given that:

Parent equation : [tex]y=x[/tex]

Transformed function : [tex]c(x)=\dfrac{5}{9}(x-32)[/tex]

Solution:

Let Parent equation be [tex]f(x)=x[/tex]. Then,

[tex]c(x)=\dfrac{5}{9}f(x-32)[/tex]      ...(1)

The translation is defined as

[tex]c(x)=kf(x+a)+b[/tex]                .... (2)

Where, k is stretch factor, a is horizontal shift and b is vertical shift.

If 0<k<1, then the graph compressed vertically by factor k and if k>1, then the graph stretch vertically by factor k.

If a>0, then the graph shifts a units left and if a<0, then the graph shifts a units right.

If b>0, then the graph shifts b units up and if b<0, then the graph shifts b units down.

On comparing (1) and (2), we get

[tex]k=\dfrac{5}{9}<1[/tex] , So graph of parent function compressed vertically by factor [tex]\dfrac{5}{9}[/tex].

[tex]a=-32<0[/tex], so the graph of parent function shifts 32 units right.

[tex]b=0[/tex], so there is no vertical shift.

Therefore, the graph of parent function compressed vertically by factor [tex]\dfrac{5}{9}[/tex] and shifts 32 units right to get the graph of c(x).

Ronard

Answer:

A : Horizontal Translation

B: Vertical Compression

Step-by-step explanation:

I did the Edgenuity

Hope this helped :)