Respuesta :

Answer:

[tex]\theta = 148.8[/tex]

Step-by-step explanation:

Given

[tex]R_x = -419[/tex]

[tex]R_y = -253[/tex]

[tex]R = 490[/tex]

Required

Determine the value of [tex]\theta[/tex]

Since, [tex]\theta[/tex] is counter clockwise from x axis;

The relationship between [tex]\theta[/tex], [tex]R_x[/tex] and R is

[tex]cos\theta = \frac{R_x}{R}[/tex]

Substitute values for Rx and R

[tex]cos\theta = \frac{-419}{490}[/tex]

[tex]cos\theta = -0.8551[/tex]

Take arccos of both sides

[tex]\theta = cos^{-1}(-0.8551)[/tex]

[tex]\theta = 148.770784108[/tex]

[tex]\theta = 148.8[/tex] (Approximated)