Respuesta :

Answer:

[tex]f_x(x,y,z)=4\sin (y-z)[/tex]

[tex]f_x(x,y,z)=4x\cos (y-z)[/tex]

[tex]f_z(x,y,z)=-4x\cos (y-z)[/tex]

Step-by-step explanation:

The given function is

[tex]f(x,y,z)=4x\sin (y-z)[/tex]

We need to find first partial derivatives of the function.

Differentiate partially w.r.t. x and y, z are constants.

[tex]f_x(x,y,z)=4(1)\sin (y-z)[/tex]

[tex]f_x(x,y,z)=4\sin (y-z)[/tex]

Differentiate partially w.r.t. y and x, z are constants.

[tex]f_y(x,y,z)=4x\cos (y-z)\dfrac{\partial}{\partial y}(y-z)[/tex]

[tex]f_y(x,y,z)=4x\cos (y-z)[/tex]

Differentiate partially w.r.t. z and x, y are constants.

[tex]f_z(x,y,z)=4x\cos (y-z)\dfrac{\partial}{\partial z}(y-z)[/tex]

[tex]f_z(x,y,z)=4x\cos (y-z)(-1)[/tex]

[tex]f_z(x,y,z)=-4x\cos (y-z)[/tex]

Therefore, the first partial derivatives of the function are [tex]f_x(x,y,z)=4\sin (y-z), f_x(x,y,z)=4x\cos (y-z)\text{ and }f_z(x,y,z)=-4x\cos (y-z)[/tex].