Respuesta :

Answer:

the region of the circle in polar coordinate can be expressed as:

[tex]\mathbf{- \dfrac{\pi}{2} \leq \theta \leq \dfrac{\pi}{2} , 0 \leq r \leq 11 cos \theta}[/tex]

Step-by-step explanation:

Given that:

[tex]x^2 +y^2 = 11x[/tex]

This implies that :

[tex](x-5.5)^2 + y^2 = 5.5^2[/tex]

center (5.5, 0) and radius = 5.5

The relation between the cartesian coordinates (x,y) and the polar coordinates (r, θ) is as follows:

x = rcosθ

y = rsinθ

Thus, [tex]x^2 + y^2 = r^2[/tex]

[tex]x^2 + y^2 = 11x[/tex]

[tex](rcos \theta)^2 + (r sin \theta)^2 = 11(rcos \theta)[/tex]

[tex]r^2 = 11r cos \theta[/tex]

Thus, the angle θ runs between [tex]- \dfrac{\pi}{2}[/tex] to [tex]\dfrac{\pi}{2}[/tex]

Therefore, the region of the circle in polar coordinate can be expressed as:

[tex]\mathbf{- \dfrac{\pi}{2} \leq \theta \leq \dfrac{\pi}{2} , 0 \leq r \leq 11 cos \theta}[/tex]

The required region is,

[tex]x=\frac{11}{2}+\frac{11}{2}cos\theta , 0\leq \theta\leq2\pi \\y=\frac{11}{2}sin\theta ,0\leq r \leq \frac{11}{2}[/tex]

Given circle is,

[tex]x^2 +y^2 = 11x[/tex]

Computation:

Solving the given circle,

[tex]x^2-11x+y^2=0\\x^2-2(\frac{11x}{2})+y^2=0[/tex]

Adding [tex]\frac{11}{2}[/tex] both sides we get,

[tex]x^2-2(\frac{11x}{2})+\frac{121}{4}+y^2=\frac{121}{4}\\(x-\frac{11}{2})^2+y^2=(\frac{11}{2})^2[/tex]

It represents a circle having the radius [tex]\frac{11}{2}[/tex] and centred at [tex](\frac{11}{2},0)[/tex]

So, in polar coordinate,

[tex]x=\frac{11}{2}+\frac{11}{2}cos\theta , 0\leq \theta\leq2\pi \\y=\frac{11}{2}sin\theta ,0\leq r \leq \frac{11}{2}[/tex]

Learn More:https://brainly.com/question/12482360