Answer:
R(x) = 150x - 6[tex]x^{4/3}[/tex]
Explanation:
Marginal Revenue function = 150 - 12[tex]x^{1/3}[/tex]
Revenue function = [tex]\int\limits^a_b {150 - 8x^1/3} \, dx[/tex]
R(x) = 150x - 8*(x^1/3+1) / (1/3 + 1) + c
R(x) = 150x - 8*3/4x^4/3 + c
R(x) = 150x - 6x^4/3 + c
Given R(o) = 0
R(o) = 0 = O + C --- C = O
R(x) = 150x - 6[tex]x^{4/3}[/tex]