A company's marginal revenue function is MR=150−8x1/3, where x is the number of units. Find the revenue function. (Evaluate C so that revenue is zero when nothing is produced.)

Respuesta :

Answer:

R(x) = 150x - 6[tex]x^{4/3}[/tex]

Explanation:

Marginal Revenue function = 150 - 12[tex]x^{1/3}[/tex]

Revenue function = [tex]\int\limits^a_b {150 - 8x^1/3} \, dx[/tex]

R(x) = 150x - 8*(x^1/3+1) / (1/3 + 1) + c

R(x) = 150x - 8*3/4x^4/3 + c

R(x) = 150x - 6x^4/3 + c

Given R(o) = 0

R(o) = 0 = O + C --- C = O

R(x) = 150x - 6[tex]x^{4/3}[/tex]