Respuesta :
Step-by-step explanation:Step 1: Simplify both sides of the equation.
4−(2y−1)=2(5y+9)+y
4+−1(2y−1)=2(5y+9)+y(Distribute the Negative Sign)
4+−1(2y)+(−1)(−1)=2(5y+9)+y
4+−2y+1=2(5y+9)+y
4+−2y+1=(2)(5y)+(2)(9)+y(Distribute)
4+−2y+1=10y+18+y
(−2y)+(4+1)=(10y+y)+(18)(Combine Like Terms)
−2y+5=11y+18
−2y+5=11y+18
Step 2: Subtract 11y from both sides.
−2y+5−11y=11y+18−11y
−13y+5=18
Step 3: Subtract 5 from both sides.
−13y+5−5=18−5
−13y=13
Step 4: Divide both sides by -13.
−13y
−13
=
13
−13
y=−1
Answer: y =-1
Here, this is a linear equation in one variable because only one variable is there, y. We need to find the solution i.e the value of y.
Given, equation:
[tex]4 - (2y - 1) = 2(5y + 9) + y[/tex]
We need to find y, So let's isolate y in any one side of the equation. Before that, let's open the parentheses.
[tex]4 - 2y + 1 = 10y + 18 + y[/tex]
[tex]5 - 2y = 11y + 18[/tex]
Now, let's add 2y to both sides, So that -2y on the left hand side gets cancel.
[tex]5 - 2y + 2y = 11y + 18 + 2y[/tex]
[tex]5 = 13y + 18[/tex]
Flipping the equation for easy calculation,
[tex]13y + 18 = 5[/tex]
Solving further,
[tex]13y = - 13[/tex]
[tex]y = \frac{ - 13}{13} [/tex]
[tex] \boxed{y = - 1}[/tex]
Hence, we are done !!
━━━━━━━━━━━━━━━━━━━━