Respuesta :

Answer:

[tex]f(n) = 5 + f(n - 1)[/tex]

Step-by-step explanation:

Given

[tex]f(n) = 5n - 2[/tex]

Required

Write a recursive expression

[tex]f(n) = 5n - 2[/tex]

When n = 1

[tex]f(1) = 5 * 1 - 2 = 5 - 2 = 3[/tex]

[tex]f(1) = 3[/tex]

When n = 2

[tex]f(2) = 5 * 2 - 2 = 10 - 2 = 8[/tex]

[tex]f(2) = 8[/tex] can be rewritten as

[tex]f(2) = 5 + 3[/tex]

Substitute 3 for f(1)

[tex]f(2) = 5 + f(1)[/tex]

Express 1 as 2 - 1

[tex]f(2) = 5 + f(2-1)[/tex] ----- (1)

When n = 3

[tex]f(3) = 5 * 3 - 2 = 15 - 2 = 13[/tex]

[tex]f(3) = 13[/tex] can be rewritten as

[tex]f(3) = 5 + 8[/tex]

Substitute 8 for f(2)

[tex]f(3) = 5 + f(2)[/tex]

Express 2 as 3 - 1

[tex]f(3) = 5 + f(3 - 1)[/tex]  ------ (2)

Write out (1) and (2)

[tex]f(2) = 5 + f(2-1)[/tex]

[tex]f(3) = 5 + f(3 - 1)[/tex]

Replace 2 and 3 with n in both cases; This gives

[tex]f(n) = 5 + f(n - 1)[/tex]

Hence;

The recursive is [tex]f(n) = 5 + f(n - 1)[/tex]