Respuesta :
Answer :
Initial velocity = 63m/s
Final velocity = 75m/s
Time taken = 4.2
We have to find acceleration of car[tex].[/tex]
_________________________________
◈ Acceleration is defined as the rate of change of speed.
- a = (v - u) / t
It is a vector quantity having both magnitude as well as direction.
SI unit : m/s²
⇒ a = (v - u) / t
⇒ a = (75 - 63) / 4.2
⇒ a = 12/4.2
⇒ a = 2.85 m/s²
Question:
The speed of a car traveling on a straight road increases from 63 m/s to 75 m/s in 4.2 seconds. What was the car's acceleration?
Answer:
[tex] \rm\red {Given:} [/tex]
- u ( initial velocity ) = 63m/s
- v ( final velocity ) = 75m/s
- t ( time taken ) = 4.2s
[tex] \rm\red {To \: find:} [/tex]
- a ( acceleration ) =?
[tex] \rm\red {Calculation:} [/tex]
We know that,
[tex] {\huge {\boxed {\tt { a = \dfrac{v-u} {t}}}}} [/tex]
Substituting values-
[tex] \sf { \qquad \leadsto a = \dfrac{75-63}{4.2}} [/tex]
[tex] \sf { \qquad \leadsto a = \dfrac{12}{4.2}} [/tex]
[tex] \sf { \qquad \leadsto a = \dfrac{\cancel {12} {} ^{\: \: 6} \times 10}{\cancel {42} {} ^{\: \: 21} }} [/tex]
[tex] \sf { \qquad \leadsto a = \dfrac{\cancel6 {} ^{\: \: \: 2}\times 10 }{\cancel {21} {} ^{\: \: 7}}} [/tex]
[tex] \sf { \qquad \leadsto a = \dfrac{2 \times 10}{7}} [/tex]
[tex] \sf { \qquad \leadsto a = \dfrac{20}{7} = 2.85} [/tex]
[tex] \therefore [/tex] Acceleration of the car was [tex] \sf { 2.8m/{s} ^{2}} [/tex]