Respuesta :

Answer:

[tex]x=2[/tex]

Step-by-step explanation:

So we have the equation:

[tex]5^x+5^{x+1}=150[/tex]

First, separate the second term:

[tex]5^x+(5\cdot5^x)=150[/tex]

Let u equal 5ˣ. So:

[tex]u+5u=150[/tex]

Combine like terms:

[tex]6u=150[/tex]

Divide both sides by 6:

[tex]u=25[/tex]

Substitute back u:

[tex]5^x=25[/tex]

Take the base 5 logarithm of both sides:

[tex]\log_5(5^x)=\log_5(25)[/tex]

The left cancels:

[tex]x=\log_5(25)[/tex]

Evaluate the right:

[tex]x=2[/tex]

So, our answer is 2.

And we're done!