Respuesta :

Answer:

[tex]y = 3(x +21)[/tex]

Step-by-step explanation:

Find the inverse this equation:

[tex]f(x) = (\frac{1}{3}x) - 7[/tex]

-Take the variable [tex]y[/tex] for [tex]f(x)[/tex], because both

[tex]y = (\frac{1}{3}x) - 7[/tex]

-Switch both variable [tex]x[/tex] and [tex]y[/tex] :

[tex]y = (\frac{1}{3}x) - 7[/tex]

[tex]x = (\frac{1}{3}y) - 7[/tex]

-Solve for [tex]y[/tex] :

[tex]x = (\frac{1}{3}y) - 7[/tex]

-Switch sides:

[tex]\frac{1}{3}y - 7 = x[/tex]

-Add both side of the equation by [tex]7[/tex] :

[tex]\frac{1}{3}y - 7 + 7 = x + 7[/tex]

[tex]\frac{1}{3}y = x + 7[/tex]

-Multiply both sides by [tex]3[/tex] :

[tex]\frac{\frac{1}{3}y}{\frac{1}{3} } = \frac{x + 7}{\frac{1}{3} }[/tex]

[tex]y = \frac{x + 7}{\frac{1}{3} }[/tex]

-Divide [tex]x + 7[/tex] by multiplying by [tex]\frac{1}{3}[/tex]

[tex]y = \frac{x + 7}{\frac{1}{3} }[/tex]

[tex]y = 3(x +21)[/tex]

Therefore, the answer is [tex]y = 3(x +21)[/tex].