Respuesta :

Step-by-step explanation:

Hey there!

The given midpoint is; X(-8,4) and G(2,-9).

To find: H

Now; You need to use formula for midpoint.

[tex]midpoint(x) = ( \frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]

Put all values.

[tex]( - 8,4) = (\frac{ 2 + x}{2} , \frac{ - 9 + y}{2} )[/tex]

As they are equal, their corresponding elements are equal.

[tex] - 8 = \frac{2 + x}{2} [/tex]

[tex] - 16 - 2 = x[/tex]

x = -18

[tex]4 = \frac{ - 9 + y}{2} [/tex]

[tex]4 \times 2 = - 9 + y[/tex]

[tex]8 + 9 = y[/tex]

[tex]y = 17[/tex]

Therefore, y = 17.

Therefore, H =( -18,17).

Hope it helps....

Answer:

  • (-18, 17)

Step-by-step explanation:

Given

  • Line segment GH with midpoint X(-8, 4) and G(2, -9)

To find

  • Coordinates of H(x, y)

Solution

Using midpoint formula

  • (2 + x)/2 = -8 ⇒ x + 2 = -16 ⇒ x = -18
  • (-9 + y)/2 = 4 ⇒ y - 9 = 8 ⇒ y = 17

So the coordinates of H are

  • (-18, 17)