Respuesta :
Step-by-step explanation:
Hey there!
The given midpoint is; X(-8,4) and G(2,-9).
To find: H
Now; You need to use formula for midpoint.
[tex]midpoint(x) = ( \frac{x1 + x2}{2} , \frac{y1 + y2}{2} )[/tex]
Put all values.
[tex]( - 8,4) = (\frac{ 2 + x}{2} , \frac{ - 9 + y}{2} )[/tex]
As they are equal, their corresponding elements are equal.
[tex] - 8 = \frac{2 + x}{2} [/tex]
[tex] - 16 - 2 = x[/tex]
x = -18
[tex]4 = \frac{ - 9 + y}{2} [/tex]
[tex]4 \times 2 = - 9 + y[/tex]
[tex]8 + 9 = y[/tex]
[tex]y = 17[/tex]
Therefore, y = 17.
Therefore, H =( -18,17).
Hope it helps....
Answer:
- (-18, 17)
Step-by-step explanation:
Given
- Line segment GH with midpoint X(-8, 4) and G(2, -9)
To find
- Coordinates of H(x, y)
Solution
Using midpoint formula
- (2 + x)/2 = -8 ⇒ x + 2 = -16 ⇒ x = -18
- (-9 + y)/2 = 4 ⇒ y - 9 = 8 ⇒ y = 17
So the coordinates of H are
- (-18, 17)