Respuesta :
Given:
The expression is [tex]\sqrt{4-6a}[/tex].
To find:
The domain of the expression.
Solution:
We have,
[tex]\sqrt{4-6a}[/tex]
We know that, the square root is defined for only non-negative values. So,
[tex]4-6a\geq 0[/tex]
[tex]4\geq 6a[/tex]
Divide both sides by 6.
[tex]\dfrac{4}{6}\geq a[/tex]
[tex]\dfrac{2}{3}\geq a[/tex]
Thus, the value of variable less than [tex]\dfrac{2}{3}[/tex] make any sense.
Therefore, the domain of the given expression is [tex](-\infty,\dfrac{2}{3}][/tex].
The domain of a function is the set of input values the function can take
The domain of the expression is: [tex]\mathbf{(-\infty, \frac 23]}[/tex]
The expression is given as:
[tex]\mathbf{\sqrt{4 - 6a}}[/tex]
Set the radicand to 0
[tex]\mathbf{4 - 6a = 0}[/tex]
Add 6a to both sides
[tex]\mathbf{6a = 4}[/tex]
Divide both sides by 6
[tex]\mathbf{a = \frac 23}[/tex]
This means that, the value of a must not be greater than 2/3.
Hence, the domain of the expression is: [tex]\mathbf{(-\infty, \frac 23]}[/tex]
Read more about domain at:
https://brainly.com/question/1632425