contestada

For what values of the variable does each of the following expressions make sense? We call the set of this values the domain of the expression. \sqrt{4-6a}

Respuesta :

Given:

The expression is [tex]\sqrt{4-6a}[/tex].

To find:

The domain of the expression.

Solution:

We have,

[tex]\sqrt{4-6a}[/tex]

We know that, the square root is defined for only non-negative values. So,

[tex]4-6a\geq 0[/tex]

[tex]4\geq 6a[/tex]

Divide both sides by 6.

[tex]\dfrac{4}{6}\geq a[/tex]

[tex]\dfrac{2}{3}\geq a[/tex]

Thus, the value of variable less than [tex]\dfrac{2}{3}[/tex] make any sense.

Therefore, the domain of the given expression is [tex](-\infty,\dfrac{2}{3}][/tex].

The domain of a function is the set of input values the function can take

The domain of the expression is: [tex]\mathbf{(-\infty, \frac 23]}[/tex]

The expression is given as:

[tex]\mathbf{\sqrt{4 - 6a}}[/tex]

Set the radicand to 0

[tex]\mathbf{4 - 6a = 0}[/tex]

Add 6a to both sides

[tex]\mathbf{6a = 4}[/tex]

Divide both sides by 6

[tex]\mathbf{a = \frac 23}[/tex]

This means that, the value of a must not be greater than 2/3.

Hence, the domain of the expression is: [tex]\mathbf{(-\infty, \frac 23]}[/tex]

Read more about domain at:

https://brainly.com/question/1632425