Respuesta :
Answer:
[tex]\huge{\fbox{\sf{ x = -50}}}[/tex]
Step-by-step explanation:
[tex]\frac{x}{5} + 7 = -3[/tex]
Take the L.C.M of 5 and 1 ( i.e 5 )
⇒[tex]\frac{x+7 * 5}{5} = -3[/tex]
⇒[tex]\frac{x+35}{5} = -3[/tex]
Do cross multiplication
⇒[tex]x + 35 = -3 * 5[/tex]
⇒[tex]x + 35 = -15[/tex]
Move 35 to right hand side and change its sign
⇒[tex]x = -15 - 35[/tex]
Remember : The negative integers are always added but posses the negative ( - ) sign.
⇒[tex]x = -50[/tex]
The value of x is [tex]\boxed{\sf{ -50}}[/tex]
Hope I helped!
Best regards!
~[tex]\text{ TheAnimeGirl}[/tex]
Here's a linear equation in variable x and we have to compute the value of x for the above equation.
Given equation:
- [tex] \large{ \rm{ \dfrac{x}{5} + 7 = - 3}}[/tex]
So, Let's start solving the above equation:
Move 7 to the Right hand side,
Remember: Inverse of addition is subtraction
[tex] \sf{ \dfrac{x}{5} = - 3 - 7}[/tex]
[tex] \sf{ \dfrac{x}{5} = - 10}[/tex]
Now multiplying 5 in other side because again the inverse of division is multiplication,
[tex] \sf{ x = - 10 \times 5}[/tex]
[tex] \sf{x = \boxed{ \red{ - 50}}}[/tex]
And the required value for x is -50. So, we are done....
Carry On Learning !