Respuesta :

Answer:

[tex]\huge{\fbox{\sf{ x = -50}}}[/tex]

Step-by-step explanation:

[tex]\frac{x}{5} + 7 = -3[/tex]

Take the L.C.M of 5 and 1 ( i.e 5 )

⇒[tex]\frac{x+7 * 5}{5} = -3[/tex]

⇒[tex]\frac{x+35}{5} = -3[/tex]

Do cross multiplication

⇒[tex]x + 35 = -3 * 5[/tex]

⇒[tex]x + 35 = -15[/tex]

Move 35 to right hand side and change its sign

⇒[tex]x = -15 - 35[/tex]

Remember : The negative integers are always added but posses the negative ( - ) sign.

⇒[tex]x = -50[/tex]

The value of x is [tex]\boxed{\sf{ -50}}[/tex]

Hope I helped!

Best regards!

~[tex]\text{ TheAnimeGirl}[/tex]

Here's a linear equation in variable x and we have to compute the value of x for the above equation.

Given equation:

  • [tex] \large{ \rm{ \dfrac{x}{5} + 7 = - 3}}[/tex]

So, Let's start solving the above equation:

Move 7 to the Right hand side,

Remember: Inverse of addition is subtraction

[tex] \sf{ \dfrac{x}{5} = - 3 - 7}[/tex]

[tex] \sf{ \dfrac{x}{5} = - 10}[/tex]

Now multiplying 5 in other side because again the inverse of division is multiplication,

[tex] \sf{ x = - 10 \times 5}[/tex]

[tex] \sf{x = \boxed{ \red{ - 50}}}[/tex]

And the required value for x is -50. So, we are done....

Carry On Learning !