Respuesta :

Answer:

u > 10  or u < -10

Step-by-step explanation:

|u| +11 > 21

Subtract 11 from each side

|u| +11-11 > 21-11

|u| > 10

There are two solutions, one positive and one negative.  Remember to flip the inequality for the negative

u > 10  or u < -10

Answer:

[tex]u<-10\quad \mathrm{or}\quad \:u>10[/tex]

Step-by-step explanation:

[tex]\left|u\right|+11>21\\\\\mathrm{Subtract\:}11\mathrm{\:from\:both\:sides}\\\\\left|u\right|+11-11>21-11\\\\Simplify\\\\\left|u\right|>10\\\\\mathrm{Apply\:absolute\:rule}:\\\quad \mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad \mathrm{or}\quad \:u\:>\:a\\\\u<-10\quad \mathrm{or}\quad \:u>10[/tex]