Answer:
Step-by-step explanation:
The given statement is the scale factor:
[tex]\dfrac{\text{scale distance}}{\text{actual distance}}=\dfrac{1\text{ cm}}{2\text{ m}}[/tex]
This can be rearranged to the formula ...
[tex]\text{actual distance}=\text{(scale distance)}\dfrac{2\text{ m}}{1\text{ cm}}[/tex]
Filling in the given scale distances, you find the actual distances to be ...
[tex]\textbf{(a) }(14\text{ cm})\dfrac{2\text{ m}}{1\text{ cm}}=14\cdot2\text{ m}=28\text{ m}\\\\\textbf{(b) }(7.5\text{ cm})\dfrac{2\text{ m}}{1\text{ cm}}=7.5\cdot2\text{ m}=15\text{ m}\\\\\textbf{(c) }(12.4\text{ cm})\dfrac{2\text{ m}}{1\text{ cm}}=12.4\cdot2\text{ m}=24.8\text{ m}\\\\\textbf{(d) }(0.5\text{ cm})\dfrac{2\text{ m}}{1\text{ cm}}=0.5\cdot2\text{ m}=1.0\text{ m}\\\\[/tex]