Respuesta :

Answer:

[tex]4y = 16-2x\\y = \frac{16}{4} - \frac{2x}{4}\\ y = \frac{-1x}{2}+4\\y = 0.5x+4[/tex]

Given parameters:

  Equation of the straight line;

                    2x + 4y = 16

The slope intercept form of the equation is y = mx + c

Where m is the slope of the line

            y and x are the coordinates

             c is the intercept

So, the problem is to write the given equation in form of y = mx + c;

 

         2x + 4y = 16

                 4y = 16 - 2x

  Divide through by 2;

                 [tex]\frac{4y}{2}[/tex]   = [tex]\frac{16}{2}[/tex] - [tex]\frac{2x}{2}[/tex]

                  2y = 8 - x

                    2y = -x + 8

 Then divide by 2 all through;

                    [tex]\frac{2y}{2}[/tex] = [tex]\frac{-x}{2} + \frac{8}{2}[/tex]

                   y = [tex]\frac{-x}{2} + 4[/tex]

The equation of the line is y = [tex]\frac{-x}{2} + 4[/tex]