PLS HELP I WILL AWARD BRAINLY

If f(x)=1−x² and g(x)=x²−1, then for which of the following values of b does
f(3b)+8=g(3b)−8?

A) 1
B)√8
C) 8
D) √3
E) 0

Respuesta :

Answer:

A

Step-by-step explanation:

We have the two functions: [tex]f(x)=1-x^2[/tex] and [tex]g(x)=x^2-1[/tex].

And we want to find the value of b such that [tex]f(3b)+8=g(3b)-8[/tex] is true.

Notice that we can multiply f(x) by -1. This yields:

[tex]-f(x)=x^2-1[/tex]

Notice that this is the same as g(x). Therefore:

[tex]-f(x)=g(x)[/tex]

If we substitute 3b for x:

[tex]-f(3b)=g(3b)[/tex]

So, we can go back to our equation. We have:

[tex]f(3b)+8=g(3b)-8[/tex]

Substitute -f(3b) for g(3b):

[tex]f(3b)+8=-f(3b)-8[/tex]

Solve. Subtract 8 from both sides and add f(3b) to both sides:

[tex]2f(3b)=-16[/tex]

Divide both sides by 2:

[tex]f(3b)=-8[/tex]

Now, we can use the function of f(x). Substitute 3b into f(x). So:

[tex]1-(3b)^2=-8[/tex]

Subtract 1 from both sides:

[tex]-(3b)^2=-9[/tex]

Divide both sides by -1:

[tex](3b)^2=9[/tex]

Take the square root of both sides:

[tex]3b=\pm 3[/tex]

Divide both sides by 3. So, the value of b can be:

[tex]b=-1, 1[/tex]

Therefore, our answer is A.

And we're done!

Answer:

A.1

Step-by-step explanation:

f(x) = 1 - x² ⇒ f(3b) = 1 - (3b)² = 1 - 9b²

g(x) = x² - 1 ⇒ g(3b) = (3b)² - 1 = 9b² - 1

f(3b) + 8 = g(3b) - 8 ⇒ (1 - 9b²) + 8 = (9b² - 1) - 8

⇔ 9 - 9b² = 9b² - 9

⇔ 9 + 9 = 9b² + 9b²

⇔ 18 = 18b²

⇔ b² = 1

⇒ b = 1; - 1