Please help!! If f (x) = e^x sin x, then f’ (x) =

Answer:
[tex] f'(x) = {e}^{x}( \sin x + \cos x ) [/tex]
Step-by-step explanation:
[tex]f(x) = {e}^{x} \sin x \\ \\ f'(x) = \sin x \frac{d}{dx} {e}^{x} + {e}^{x} \frac{d}{dx} \sin x \\ \\ f'(x) = \sin x \: {e}^{x} +{e}^{x} \cos x \\ \\ f'(x) = {e}^{x}( \sin x + \cos x ) [/tex]