Answer:
The height of the object is 5007.4 miles.
Explanation:
Given that,
Weight of object = 200 lb
We need to calculate the value of [tex]Gmm_{e}[/tex]
Using formula of gravitational force
[tex]F=\dfrac{Gmm_{e}}{r^2}[/tex]
Put the value into the formula
[tex]200=\dfrac{Gmm_{e}}{(3958.756)^2}[/tex]
[tex]200\times(3958.756)^2=Gmm_{e}[/tex]
[tex]Gmm_{e}=3.134\times10^{9}[/tex]
We need to calculate the height of the object
Using formula of gravitational force
[tex]F=\dfrac{Gmm_{e}}{r^2}[/tex]
Put the value into the formula
[tex]125=\dfrac{200\times(3958.756)^2}{r^2}[/tex]
[tex]r^2=\dfrac{200\times(3958.756)^2}{125}[/tex]
[tex]r^2=25074798.5[/tex]
[tex]r=\sqrt{25074798.5}[/tex]
[tex]r=5007.4\ miles[/tex]
Hence. The height of the object is 5007.4 miles.