Respuesta :
Answer:
The coordinates of [tex]Y'(x,y)[/tex] and [tex]Z'(x,y)[/tex] are [tex]Y'(x,y) = (2.3, 7)[/tex] and [tex]Z'(x,y) = (1.8, 5)[/tex], respectively.
Step-by-step explanation:
A translation is a geometrical operation consisting in moving a point a given distance. We proceed to describe the operation:
[tex]X(x,y) +U(x,y) = X'(x,y)[/tex] (Eq. 1)
Where:
[tex]X(x, y)[/tex] - Initial point on the cartesian plane, dimensionless.
[tex]X'(x, y)[/tex] - Translated point on the cartesian plane, dimensionless.
[tex]U(x, y)[/tex] - Translation component, dimensionless.
Vectorially speaking, we find that translation component is:
[tex]U(x, y) = X'(x,y) -X(x,y)[/tex]
If we know that [tex]X(x,y) = (8, -2.3)[/tex] and [tex]X'(x,y) = (3.8, -0.3)[/tex], the translation component is:
[tex]U(x,y) = (3.8,-0.3)-(8,-2.3)[/tex]
[tex]U(x,y) = (3.8-8, -0.3+2.3)[/tex]
[tex]U(x,y) = (-4.2, 2)[/tex]
Now we determine the coordinates of [tex]Y'(x,y)[/tex] and [tex]Z'(x,y)[/tex]:
([tex]Y(x,y) = (6.5, 5)[/tex], [tex]Z(x,y) = (6,3)[/tex])
[tex]Y'(x,y) = Y(x,y) + U(x,y)[/tex] (Eq. 2)
[tex]Y'(x,y)=(6.5, 5) + (-4.2, 2)[/tex]
[tex]Y'(x,y) = (2.3, 7)[/tex]
[tex]Z'(x,y) = Z(x,y) + U(x,y)[/tex] (Eq. 3)
[tex]Z'(x,y) = (6,3)+(-4.2,2)[/tex]
[tex]Z'(x,y) = (1.8, 5)[/tex]
The coordinates of [tex]Y'(x,y)[/tex] and [tex]Z'(x,y)[/tex] are [tex]Y'(x,y) = (2.3, 7)[/tex] and [tex]Z'(x,y) = (1.8, 5)[/tex], respectively.