contestada

A two-year bond with par value $1,000 making annual coupon payments of $99 is priced at $1,000.


a. What is the yield to maturity of the bond? (Round your answer to 1 decimal place.)

b. What will be the realized compound yield to maturity if the one-year interest rate next year turns out to be (a) 7.9%, (b) 9.9%, (c) 11.9%? (Do not round intermediate calculations. Round your answers to 2 decimal places.)

Respuesta :

Answer:

(a) 9.9%

(b)  10.09%

The further explanation is given below.

Explanation:

The given values are:

Coupon payment

=  $99

Price

=  $1,000

(a)

The Yield to maturity (YTM) will be:

= [tex]\frac{C+\frac{F-P}{n} }{\frac{F+P}{2} }[/tex]

where,

C = Coupon payment

P = Price

n = years to maturity

F = Face value

On putting the estimated values is the above formula, we get

⇒  [tex]99+\frac{0}{1000}[/tex]

⇒  [tex].099[/tex]

⇒  [tex]9.9[/tex]%

(b)

Although the 1st year coupon was indeed reinvested outside an interest rate of r%, cumulative money raised will indeed be made at the end of 2nd year.  

= [tex][99\times (1 + r)] + 1,099[/tex]

Came to the realization compound YTM is therefore a function of r, as is shown throughout the table below:

Rate (r)             Total proceeds         Realized YTM ([tex](\frac{proceeds}{1000} )^{.5} - 1[/tex])

7.9%                      1205.8                                   9.8%

9.9%                             1207.8                                   9.9%

11.9%                      1209.8                                  9.99%

Now,

Overall proceeds realized YTM:

= [tex]\frac{proceeds}{1000} -18 \ percent \ 1,\frac{2081208}{1000} - 1[/tex]

= [tex]0.0991[/tex]

= [tex]9.91 \ percent \ 10 \ percent \ 1,\frac{2101210}{1000}- 1[/tex]

= [tex]0.1000[/tex]

= [tex]10.00 \ percent \ 12 \ percent \ 1,\frac{2121212}{1000}-1[/tex]

= [tex]0.1009[/tex]

= [tex]10.09[/tex]%

Otras preguntas