Determine the range of the function.
y=1/4x^2 - 5



a.All real numbers.

b.All integers less than or equal to -5.

c.All integers greater than or equal to -5.

d.All real numbers greater than or equal to -5.

Respuesta :

Answer:

[tex]Solution: f(x)\ge-5\\Interval:[-5,\infty)[/tex]

Step-by-step explanation:

Equation: [tex]\frac{1}{4} x^2-5 = y[/tex]

1). [tex]\frac{1}{4} x^2-5 = y[/tex] →[tex]\frac{x^2}{4}-5=y[/tex]

2). [tex]\frac{x^2}{4}-5=y[/tex] ∴ [tex]a=\frac{1}{4}, b=0, c=-5[/tex]

3). [tex]x_v=-\frac{b}{2a}[/tex]

         [tex]=-\frac{0}{2(\frac{1}{4})}[/tex]

         [tex]=0[/tex]

4). now plug [tex]x_v[/tex] into [tex]y_v[/tex]

[tex]y_v=\frac{0^2}{4}-5[/tex]

    [tex]=-5[/tex]

5). Minimum (0,-5) ∴ [tex]f(x)\ge-5[/tex]